Bellman
Ford

CS 251 - Data Structures
and Algorithms

| Note:
Slides complement the
discussion in class

O

@) O

Bellman-Ford Algorithm Table Of COHtentS
@ Shortest paths with negative

weights

01

Bellman- Ford Algorlthm

tttttttttttttttttttttttttttttttt

Application: Arbitrage Opportunities

Wanna make an easy profit? Use

graphs! USD (EUR | GBP | CHF | CAD
usp |1 0.741 | 0.657 | 1.061 | 1.005
If you have USD $10,000... EUR | 1349 |1 0.888 | 1433 | 1366
* How many Swiss francs (CHF) can
you buy? GBP | 1521 | 1126 |1 1614 | 1538
* How many Euros (EUR) can you buy? CHF | 0942 | 0.698 | 0619 |1 0.953

* How could you exchange money and
make a profit?

/e

CAD | 099 | 0.732 | 0.650 | 1.049 |1

Application: Arbitrage Opportunities

Buy USD 10,000 in EUR: 10,000 * 0.741

Now you have EUR 7,410. Usb | EUR | GBP | CHF) CAD
USD 1 0.741 0.657 1.061 1.005
Buy CAD with your EUR: 7,410 * 1.366 EUR | 1349 | 1 0888 | 1433 | 1366
You get CAD 10,122.
GBP 1.521 1.126 1 1.614 1.538

BUY USD with your CAD: 10,122 * 0.995 CHF | 0942 | 0698 |0619 |1 0.953
You get USD 10,071 (Profit!)

CAD | 099 | 0.732 | 0.650 | 1.049 |1

Disclaimer: It is more complicated that it looks like due to limitations, fees, regulations, and currency volatility.

Application: Arbitrage Opportunities

Challenges:
USD |EUR |GBP | CHF | CAD

1. Understand the problem in terms of UsD |1 0741 | 0.657 | 1.061 | 1.005

graphs. EUR 1349 |1 0.888 | 1433 | 1366
2. Find acycle in the graph such that it

“always increases its weight”. Is that | 6BP 1521 11126 /1 1614 | 1538

even possible? CHF | 0942 | 0.698 | 0.619 | 1 0.953

CAD | 0995 | 0732 | 0.650 | 1049 |1

/©\@ Application: Arbitrage Opportunities

0.741 % 1.366 % 995 = L.007144%7

An arbitrage opportunity

Algorithms, 4t edition, Sedgewick and Wayne. Official web site

USD EUR GBP CHF CAD
Usb |1 0.741 0.657 | 1.061 1.005
EUR | 1.349 1 0.888 | 1.433 1.366
GBP | 1.521 1126 1 1.614 1.538
CHF | 0942 | 0.698 | 0.619 |1 0.953
CAD | 0995 | 0.732 | 0.650 | 1049 |1

Application: Arbitrage Opportunities

Transform the problem: Let u, v, w be the weights of
three edges forming a cycle in a graph.

Goal: uvw > 1
uvw > 1
log(uvw) > log(1)
log(u) + log(v) + log(w) > 0
—1(log(u) + log(v) + log(w)) < 0
—log(u) — log(v) —log(w) < 0

Now the problem is to find a negative weight cycle in

An arbi i i
n arbitrage oppartuntty the graph. Let's use the Bellman-Ford algorithm.

Algorithms, 4t edition, Sedgewick and Wayne. Official web site

Richard Bellman. "0n a Routing
Problem." Quarterly of Applied
Mathematics, vol. 16, no. 1, pp. 87-
90, 1958.

Lester R. Ford, Jr. "Network Flow
Theory." RAND Corporation, P-923,
1956.

https://www.jstor.org/stable/43634538

1958] RICHARD BELLMAN 87

ON A ROUTING PROBLEM*
By RICHARD BELLMAN (The RAND Corporation)

Summary. Given a set of N cities, with every two linked by a road, and the times
required to traverse these roads, we wish to determine the path from one given city to
another given city which minimizes the travel time. The times are not directly pro-
portional to the distances due to varying quality of roads and varying quantities of
traffic.

The fi ional equation of dynamie ing, combined with approxi-
mation in policy space, yields an iterative algorithm which converges after at most
(N — 1) iterations.

1. Introduction. The problem we wish to treat is a combinatorial one involving
the determination of an optimal route from one point to another. These problems are
usually difficult when we allow a continuum, and when we admit only a discrete set
of paths, as we shall do below, they are notoriously so.

The purpose of this paper is to show that the functional equation technique of
dynamie programming, [1, 2], combined with the concept of approximation in palicy
space, yields a method of successive approximations which is readily accessible to either
hand or machine computation for problems of realistic magnitude. The methou is dis-
tinguished by the fact that it is a method of exhaustion, i.e. it converges after a finite
number of iterations, bounded in advance.

2. Formulation. Consider a set of N cities, numbered in some arbitrary fashion
from 1 to N, with every two linked by a direct road. The time required to travel from
i to j is not directly proportional to the distance between ¢ and j, due to road eonditions
and traffic. Given the matrix T = (), not necessarily symmetric, where t;; is the
time required to travel from 7 to j, we wish to trace a path between 1 and N which
consumes minimum time.

Since there are only a finite number of paths available, the problem reduces to
choosing the smallest from a finite set of numbers. This direct, or enumerative, approach
is impossible to execute, however, for values of N of the order of magnitude of 20.

We shall construct a search technique which greatly reduces the time required to
find minimal paths.

3. Functional equation approach. Let us now i
approach. Let

d

a dynamie p

1, = the time required to travel from i to N, i = 1,2, -+, N — 1,
using an optimal policy, @1
with fx = 0.

Employing the principle of optimality, we see that the f, satisfy the nonlinear system

of equations
fo=Min [ty + f], =12 ,N=-1,
i (3.2)

fv=10.

*Received January 30, 1957,

This content downloaded from
73.103.76.200 on Sun, 09 Jun 2024 02:23:16 +00-00
use subject to hitps:/jahout jstor org/terms

10

https://www.jstor.org/stable/43634538

Bellman-Ford Algorithm

Given a digraph G = {V, E} and a source vertex v € V, Bellman-Ford's
algorithm finds the shortest path from v to every other vertex in the digraph.

Bellman-Ford's algorithm works on any weighted digraph (even with negative
weights).

The last pass through the edges will determine if there are negative weight
cycles.

ll

Bellman-Ford
Algorithm

algorithm BellmanFord(G(V,E), s€V)

let dist:V > Z
let prev:V -V

for each v eV do
dist[v] ¢ o
previv] « -1

end for

dist[s] <« ©

for i from 1 to |V|—1 do
for each e = (u,v) EE do
d « dist[u] + weight(e)
if d < dist[v] then
dist[v] « d
prev[v] « u
end if
end for
end for

for each e = (u,v) EE do
if dist[u] + weight(e) < dist[v] then
error “Negative Weight Cycle”
end if
end for

return dist, prev
end algorithm

12

Remember: dist(v) = min(dist(v), dist(u) + weight(u, v))

Edge

(0,1)

(0, 3)

(1,2)

(3,1)

(5, 2)

(3,5)

(5, 4)

(3, 4)

(4, 6)

(2, 6)

13

Remember: dist(v) = min(dist(v), dist(u) + weight(u, v))

dist =13
prev =2

Edge

(0,1)

(0, 3)

(1,2)

(3,1)

(5, 2)

(3,5)

(5, 4)

(3, 4)

(4, 6)

(2, 6)

14

Remember: dist(v) = min(dist(v), dist(u) + weight(u, v))

dist=12
prev =2

Edge

(0,1)

(0, 3)

(1,2)

(3,1)

(5, 2)

NOX | x| x| x

(3,5)

(5, 4)

(3, 4)

(4, 6)

(2, 6)

Nox<X x| x| x

15

Remember: dist(v) = min(dist(v), dist(u) + weight(u, v))

dist=12
prev =2

Edge

1
N

(0,1)

(0, 3)

(1,2)

(3,1)

(5, 2)

NOX | x| x| x

(3,5)

(5, 4)

(3, 4)

(4, 6)

(2, 6)

Nox<X x| x| x

< | X | X | X | X | X | X | X| X | X

16

Remember: dist(v) = min(dist(v), dist(u) + weight(u, v))

dist=12
prev =2

Edge

1
N

(0,1)

(0, 3)

(1,2)

(3,1)

(5, 2)

NOX | x| x| x

(3,5)

(5, 4)

(3, 4)

(4, 6)

(2, 6)

Nox<X x| x| x

< | X | X | X | X | X | X | X| X | X

17

algorithm BellmanFord(G(V,E), s€V)

let dist:V > Z
let prev:V >V

for each veV do
dist[v] ¢ o
prev[v] « -1

end for

dist[s] <« @

for i from 1 to |V|—1 do
for each e=(u,v) €EE do
d « dist[u] + weight(e)
if d < dist[v] then
dist[v] « d
prev[v] « u
end if
end for
end for

for each e=(u,v) €EE do
if dist[u] + weight(e) < dist[v] then
error “Negative Weight Cycle”
end if
end for

return dist, prev
end algorithm

Runtime:

 Initializing arrays: O(|V])

» Resetting values in the arrays (aka. Edge
relaxation): O(|V||E|)

» Checking for negative weight cycles:
O(IED)

Bellman-Ford's Runtime: O(|V||E])

O

18

~ We're Done!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

19

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Bellman Ford
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Bellman-Ford Algorithm
	Slide 5: Application: Arbitrage Opportunities
	Slide 6: Application: Arbitrage Opportunities
	Slide 7: Application: Arbitrage Opportunities
	Slide 8: Application: Arbitrage Opportunities
	Slide 9: Application: Arbitrage Opportunities
	Slide 10: Richard Bellman. "On a Routing Problem." Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 87-90, 1958. Lester R. Ford, Jr. "Network Flow Theory." RAND Corporation, P-923, 1956.
	Slide 11: Bellman-Ford Algorithm
	Slide 12: Bellman-Ford Algorithm
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: We’re Done!

