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Application: Arbitrage Opportunities

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Wanna make an easy profit? Use 
graphs!

If you have USD $10,000…
• How many Swiss francs (CHF) can 

you buy?
• How many Euros (EUR) can you buy?
• How could you exchange money and 

make a profit?
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Application: Arbitrage Opportunities

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Buy USD 10,000 in EUR: 10,000 * 0.741
Now you have EUR 7,410.

Buy CAD with your EUR: 7,410 * 1.366
You get CAD 10,122.

BUY USD with your CAD: 10,122 * 0.995
You get USD 10,071 (Profit!)

Disclaimer: It is more complicated that it looks like due to limitations, fees, regulations, and currency volatility. 6



Application: Arbitrage Opportunities

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Challenges:

1. Understand the problem in terms of 
graphs.

2. Find a cycle in the graph such that it 
“always increases its weight”. Is that 
even possible?
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Application: Arbitrage Opportunities

USD EUR GBP CHF CAD
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Application: Arbitrage Opportunities

Algorithms, 4th edition, Sedgewick and Wayne. Official web site

Transform the problem: Let 𝑢, 𝑣, 𝑤 be the weights of 
three edges forming a cycle in a graph.

Goal: 𝑢𝑣𝑤 > 1
𝑢𝑣𝑤 > 1

log 𝑢𝑣𝑤 > log(1)
log 𝑢 + log 𝑣 + log 𝑤 > 0

−1 log 𝑢 + log 𝑣 + log 𝑤 < 0
− log 𝑢 − log 𝑣 − log 𝑤 < 0

Now the problem is to find a negative weight cycle in 
the graph. Let’s use the Bellman-Ford algorithm.
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Richard Bellman. "On a Routing 
Problem." Quarterly of Applied 

Mathematics, vol. 16, no. 1, pp. 87-
90, 1958.

Lester R. Ford, Jr. "Network Flow 
Theory." RAND Corporation, P-923, 

1956.

10https://www.jstor.org/stable/43634538

https://www.jstor.org/stable/43634538


Bellman-Ford Algorithm

1. Given a digraph 𝐺 = {𝑉, 𝐸} and a source vertex 𝑣 ∈ 𝑉, Bellman-Ford's 
algorithm finds the shortest path from 𝑣 to every other vertex in the digraph.

2. Bellman-Ford’s algorithm works on any weighted digraph (even with negative 
weights).

3. The last pass through the edges will determine if there are negative weight 
cycles.
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Bellman-Ford 
Algorithm

algorithm BellmanFord(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉

for each 𝑣 ∈ 𝑉 do
dist[𝑣] ← ∞
prev[𝑣] ← -1

end for
dist[𝑠] ← 0

for 𝑖 from 1 to 𝑉 − 1 do
for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do

d ← dist[𝑢] + weight(𝑒)
if d < dist[𝑣] then

dist[𝑣] ← d
prev[𝑣] ← 𝑢

end if
end for

end for

for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do
if dist[𝑢] + weight(𝑒) < dist[𝑣] then

error “Negative Weight Cycle”
end if

end for

return dist, prev
end algorithm
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Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣
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Edge i = 1 i = 2 i = 3

(0, 1) ✓

(0, 3) ✓

(1, 2) ✓

(3, 1) X

(5, 2) X

(3, 5) ✓

(5, 4) ✓

(3, 4) X
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(2, 6) ✓
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Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣
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Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣
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Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣
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Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣



Runtime:
• Initializing arrays: 𝑂 𝑉
• Resetting values in the arrays (aka. Edge 

relaxation): 𝑂 𝑉 𝐸
• Checking for negative weight cycles: 

𝑂 𝐸

Bellman-Ford’s Runtime: 𝑂 𝑉 𝐸
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algorithm BellmanFord(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉

for each 𝑣 ∈ 𝑉 do
dist[𝑣] ← ∞
prev[𝑣] ← -1

end for
dist[𝑠] ← 0

for 𝑖 from 1 to 𝑉 − 1 do
for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do

d ← dist[𝑢] + weight(𝑒)
if d < dist[𝑣] then

dist[𝑣] ← d
prev[𝑣] ← 𝑢

end if
end for

end for

for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do
if dist[𝑢] + weight(𝑒) < dist[𝑣] then

error “Negative Weight Cycle”
end if

end for

return dist, prev
end algorithm
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We’re Done!
Do you have any questions?
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