
Bellman
Ford

CS 251 - Data Structures
and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Shortest paths with negative
weights

Bellman-Ford Algorithm
01

3

Bellman-Ford Algorithm
01

Shortest paths with negative weights

4

Application: Arbitrage Opportunities

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Wanna make an easy profit? Use
graphs!

If you have USD $10,000…
• How many Swiss francs (CHF) can

you buy?
• How many Euros (EUR) can you buy?
• How could you exchange money and

make a profit?

5

Application: Arbitrage Opportunities

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Buy USD 10,000 in EUR: 10,000 * 0.741
Now you have EUR 7,410.

Buy CAD with your EUR: 7,410 * 1.366
You get CAD 10,122.

BUY USD with your CAD: 10,122 * 0.995
You get USD 10,071 (Profit!)

Disclaimer: It is more complicated that it looks like due to limitations, fees, regulations, and currency volatility. 6

Application: Arbitrage Opportunities

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Challenges:

1. Understand the problem in terms of
graphs.

2. Find a cycle in the graph such that it
“always increases its weight”. Is that
even possible?

7

Application: Arbitrage Opportunities

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Algorithms, 4th edition, Sedgewick and Wayne. Official web site 8

Application: Arbitrage Opportunities

Algorithms, 4th edition, Sedgewick and Wayne. Official web site

Transform the problem: Let 𝑢, 𝑣, 𝑤 be the weights of
three edges forming a cycle in a graph.

Goal: 𝑢𝑣𝑤 > 1
𝑢𝑣𝑤 > 1

log 𝑢𝑣𝑤 > log(1)
log 𝑢 + log 𝑣 + log 𝑤 > 0

−1 log 𝑢 + log 𝑣 + log 𝑤 < 0
− log 𝑢 − log 𝑣 − log 𝑤 < 0

Now the problem is to find a negative weight cycle in
the graph. Let’s use the Bellman-Ford algorithm.

9

Richard Bellman. "On a Routing
Problem." Quarterly of Applied

Mathematics, vol. 16, no. 1, pp. 87-
90, 1958.

Lester R. Ford, Jr. "Network Flow
Theory." RAND Corporation, P-923,

1956.

10https://www.jstor.org/stable/43634538

https://www.jstor.org/stable/43634538

Bellman-Ford Algorithm

1. Given a digraph 𝐺 = {𝑉, 𝐸} and a source vertex 𝑣 ∈ 𝑉, Bellman-Ford's
algorithm finds the shortest path from 𝑣 to every other vertex in the digraph.

2. Bellman-Ford’s algorithm works on any weighted digraph (even with negative
weights).

3. The last pass through the edges will determine if there are negative weight
cycles.

11

Bellman-Ford
Algorithm

algorithm BellmanFord(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉

for each 𝑣 ∈ 𝑉 do
dist[𝑣] ← ∞
prev[𝑣] ← -1

end for
dist[𝑠] ← 0

for 𝑖 from 1 to 𝑉 − 1 do
for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do

d ← dist[𝑢] + weight(𝑒)
if d < dist[𝑣] then

dist[𝑣] ← d
prev[𝑣] ← 𝑢

end if
end for

end for

for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do
if dist[𝑢] + weight(𝑒) < dist[𝑣] then

error “Negative Weight Cycle”
end if

end for

return dist, prev
end algorithm

12

0

1

3

2

5

4

6dist = 0
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

-4

8

8

11

2

6
-7

-1

9

10

Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣

Edge i = 1 i = 2 i = 3

(0, 1)

(0, 3)

(1, 2)

(3, 1)

(5, 2)

(3, 5)

(5, 4)

(3, 4)

(4, 6)

(2, 6)

13

0

1

3

2

5

4

6dist = 0
prev = -1

dist = -4
prev = 0

dist = 4
prev = 1

dist = 13
prev = 2

dist = 1
prev = 3

dist = 7
prev = 5

dist = 8
prev = 0

-4

8

8

11

2

6
-7

-1

9

10

Edge i = 1 i = 2 i = 3

(0, 1) ✓

(0, 3) ✓

(1, 2) ✓

(3, 1) X

(5, 2) X

(3, 5) ✓

(5, 4) ✓

(3, 4) X

(4, 6) ✓

(2, 6) ✓

14

Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣

0

1

3

2

5

4

6dist = 0
prev = -1

dist = -4
prev = 0

dist = 3
prev = 5

dist = 12
prev = 2

dist = 1
prev = 3

dist = 7
prev = 5

dist = 8
prev = 0

-4

8

8

11

2

6
-7

-1

9

10

Edge i = 1 i = 2 i = 3

(0, 1) ✓ X

(0, 3) ✓ X

(1, 2) ✓ X

(3, 1) X X

(5, 2) X ✓

(3, 5) ✓ X

(5, 4) ✓ X

(3, 4) X X

(4, 6) ✓ X

(2, 6) ✓ ✓

15

Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣

0

1

3

2

5

4

6dist = 0
prev = -1

dist = -4
prev = 0

dist = 3
prev = 5

dist = 12
prev = 2

dist = 1
prev = 3

dist = 7
prev = 5

dist = 8
prev = 0

-4

8

8

11

2

6
-7

-1

9

10

Edge i = 1 i = 2 i = 3

(0, 1) ✓ X X

(0, 3) ✓ X X

(1, 2) ✓ X X

(3, 1) X X X

(5, 2) X ✓ X

(3, 5) ✓ X X

(5, 4) ✓ X X

(3, 4) X X X

(4, 6) ✓ X X

(2, 6) ✓ ✓ X

16

Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣

0

1

3

2

5

4

6dist = 0
prev = -1

dist = -4
prev = 0

dist = 3
prev = 5

dist = 12
prev = 2

dist = 1
prev = 3

dist = 7
prev = 5

dist = 8
prev = 0

-4

8

8

11

2

6
-7

-1

9

10

Edge i = 1 i = 2 i = 3

(0, 1) ✓ X X

(0, 3) ✓ X X

(1, 2) ✓ X X

(3, 1) X X X

(5, 2) X ✓ X

(3, 5) ✓ X X

(5, 4) ✓ X X

(3, 4) X X X

(4, 6) ✓ X X

(2, 6) ✓ ✓ X

17

Remember: dist 𝑣 = min dist 𝑣 , dist 𝑢 + weight 𝑢, 𝑣

Runtime:
• Initializing arrays: 𝑂 𝑉
• Resetting values in the arrays (aka. Edge

relaxation): 𝑂 𝑉 𝐸
• Checking for negative weight cycles:

𝑂 𝐸

Bellman-Ford’s Runtime: 𝑂 𝑉 𝐸

18

algorithm BellmanFord(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉

for each 𝑣 ∈ 𝑉 do
dist[𝑣] ← ∞
prev[𝑣] ← -1

end for
dist[𝑠] ← 0

for 𝑖 from 1 to 𝑉 − 1 do
for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do

d ← dist[𝑢] + weight(𝑒)
if d < dist[𝑣] then

dist[𝑣] ← d
prev[𝑣] ← 𝑢

end if
end for

end for

for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do
if dist[𝑢] + weight(𝑒) < dist[𝑣] then

error “Negative Weight Cycle”
end if

end for

return dist, prev
end algorithm

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

We’re Done!
Do you have any questions?

19

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Bellman Ford
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Bellman-Ford Algorithm
	Slide 5: Application: Arbitrage Opportunities
	Slide 6: Application: Arbitrage Opportunities
	Slide 7: Application: Arbitrage Opportunities
	Slide 8: Application: Arbitrage Opportunities
	Slide 9: Application: Arbitrage Opportunities
	Slide 10: Richard Bellman. "On a Routing Problem." Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 87-90, 1958. Lester R. Ford, Jr. "Network Flow Theory." RAND Corporation, P-923, 1956.
	Slide 11: Bellman-Ford Algorithm
	Slide 12: Bellman-Ford Algorithm
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: We’re Done!

